REPORT ON GEOTECHNICAL INVESTIGATION FOR PROPOSED PRABHU KUNJ COMMERCIAL (2B+LG+G+7) BUILDING FOR Mr. VIRENDRA BHAGAT, BANK MORE, DHANBAD, JHARKHAND.

JULY' 2021

GEOTECHNICAL CONSULTANT HOME CONCEPT

D-1, INDUKAMAL APARTMENT, HARIHAR SINGH ROAD, MORABADI, RANCHI. (Email: con_cept2007@rediffmail.com)

CONTENTS

SL.NO.	CHAPTER	PAGES/REFERENCE
1.	Introduction	1
2	Description of the Site	2
3	Field investigation	3
4	Laboratory Testing	4
5	Description of Sub- Soil	5
6	Recommendation of foundation system & Modulus of subgrade reaction	6
7	Borehole Location Plan	8
8	Bore logs	10-14
9	Sections	16-17
10	Foundation model	19
11	Annexure	Annex. No. A-1

Report on Geotechnical Investigation for Proposed Prabhu Kunj Commercial (2B+LG+G+7) Building For Mr. Virendra Bhagat, Bank More, Dhanbad, Jharkhand.

Introduction

t has been proposed to construct Prabhu Kunj Commercial (2B+LG+G+7) Building for Mr. Virendra Bhagat, Bank More, Dhanbad, Jharkhand. For accessing ground condition, sub-soil stratification, load carrying capacity of the sub-soil etc., a detailed geotechnical investigation (soil investigation) for the site was needed and M/s Home Concept, Ranchi was appointed as geotechnical Agency to carry out the geotechnical investigation.

The scope of the work consists of the following:

- a. No. of bore holes 5.
- b. To and fro Transportation of man, machines, materials and samples
- c. Making bore holes with hand auger in hard/soft soil up to a <u>depth of 5 m from</u> existing ground level or refusal whichever occurs earlier.
- d. Carrying out Standard Penetration Tests at different depths and Collection of representative samples from different soil strata so as to enable fair assessment of soil profile and engineering properties of sub-soil at the bore hole locations.
- e. Carrying out Laboratory testing of soil samples collected as above.
- f. Recommending the suitability or otherwise of the sub soil to carry loads of medium pressure intensity.
- g. Recommendation of Allowable bearing capacity of the soil.
- h. Recommending suitable foundation system for medium pressure intensity structures.

Description of the Site

he site is almost a flat one. The bore-hole locations have been indicated in Sketch No HC/AG/VB/DNB/21/02-01. The Sub-soil consists of TWO (4) major layers up to the explored depth.

The first layer is consisting of Filling.

The second layer is consisting of Brown sandy silty clay.

The third layer is consisting of Brown clayey silty sand with/ without gravels.

The forth layer is consisting of Brown partially clay stone/ silt stone (slaty) and the foundation will rest in (third & forth) both layer. Undisturbed and Disturbed samples were collected from this layer. The Test results have been Tabulated as "Summary of Laboratory Test Results" and furnished in this report. The foundation Model HC/AG/VB/DNB/21/02-03 depicts the considerations in arriving at the Allowable Bearing Capacity considering this layer as the foundation medium.

In view of the importance of the buildings, as well the usual uncertainty of nature of deposition, it was decided to be conservative in predicting the Allowable Bearing capacity of the foundation medium without sacrificing much of the economy.

The GWT was struck during exploration at all bore locations as indicated in the corresponding Bore Logs.

The location of boreholes is shown in Sketch HC/AG/VB/DNB/21/02-01. Total 5 Nos. of bore holes, were sunk in the site. The boreholes were up to 5.20 m.

Boring

The boring was carried out using shell and auger method. Casing was used up to a depth of 1.5 metres to protect the sides of boreholes against collapse. The boring was conducted as per the guidelines and provisions of IS: 1892. Standard Penetration Tests were conducted in all the boreholes and all the strata encountered in a well-planned manner. Undisturbed soil samples were collected from different boreholes as well from different strata. Disturbed samples were also collected from split spoon at all the test depth and test location of Standard Penetration Test and from different typical strata.

1. Sampling

I. Undisturbed Sampling

Undisturbed soil samples were collected as per guidelines of IS: 1892 Code of Practice for site investigation for foundation. The sampling system used was an assembly of a sampling tube of 100 mm. diameter and 450mm. long connected with a jarring link. The specification of the tube is as per the provision of IS: 2132, Code of practice for thin-walled sampling of soils.

After the samples are collected within the tubes, the tubes are taken out of the boreholes. Both ends of the tubes are sealed with wax, properly labeled, capped and thus made ready for onward transmission to the laboratory.

II. Disturbed samples

Disturbed samples were collected at very close frequencies, at Standard Penetration Test depth from the SPT split spoon sampler. These samples were collected in polythene bags, properly labeled and thus made ready for onward transmission to the laboratory.

2. Standard Penetration Test

Standard Penetration Test was conducted as per the guidelines and provisions of IS: 2131, Method for standard penetration test for soil, in all the boreholes at regular intervals or at change of strata with the SPT sampler. During the test, the sampler was driven by dropping a weight of 65 Kg. through a height of 750 mm. The sampler was driven through a depth of 450 mm or up to refusal. The number of blows for every 75mm of penetration was recorded. The first 150 mm was taken as seating drive; the number of blows for subsequent 300 mm. was used to determine the **SPT-N value.** The observed **N** –**values** are indicated in the corresponding bore logs.

3. Recording of Ground Water Table

The GWT was struck during exploration at all bore locations as indicated in the corresponding Bore Logs.

Laboratory Testing

Laboratory tests were conducted on the soil samples collected from all the FIVE (5) boreholes. The tests were conducted as per provisions and guidelines of Bureau of Indian Standard laid down in their different codes. The following tests were conducted for ascertaining the engineering and physical properties of the sub-soil:

- Grain Size Analysis (Both Sieve and hydrometer)
- Atterberg's Limits and Shrinkage Limit
- Moisture Content
- Bulk Density
- Tri-axial Tests
- Unconfined Compression Tests
- Consolidation Tests

Description of Sub-Soil

he location of bore holes are shown in sketch no HC/AG/VB/DNB/21/02-01. The

▲ bore logs indicate the sub-soil condition encountered during field investigation with due consideration of the laboratory tests on disturbed & undisturbed soil samples as well as soil samples obtained from split spoon of the **Standard Penetration Test (SPT)** apparatus. The SPT values (**N Values**) are indicated in the corresponding bore logs.

Sub- Soil Profile

Sketch HC/AG/VB/DNB/21/02-02 shows the sub- soil profile across the boreholes. The level indicated as ± 0.000 M corresponds to the existing Ground Level at BH locations. Broadly the sub- soil profile of the site is in FOUR (4) layers up to the depth where the exploration was terminated. The layers have been described earlier under description of the site.

It is found from foundation models Sketch No HC/AG/VB/DNB/21/02-03 the layer is having moderate engineering properties to rest foundation of medium pressure intensity.

The bearing capacity calculation along with recommendations for net safe bearing pressures for different sizes and shapes of footings resting at a founding level of 7.5 m are indicated in tabular form in this report. As per IS 1904-1978, Clause 9.3, all foundations are to be extended to a minimum depth of 500mm below Natural Ground Level.

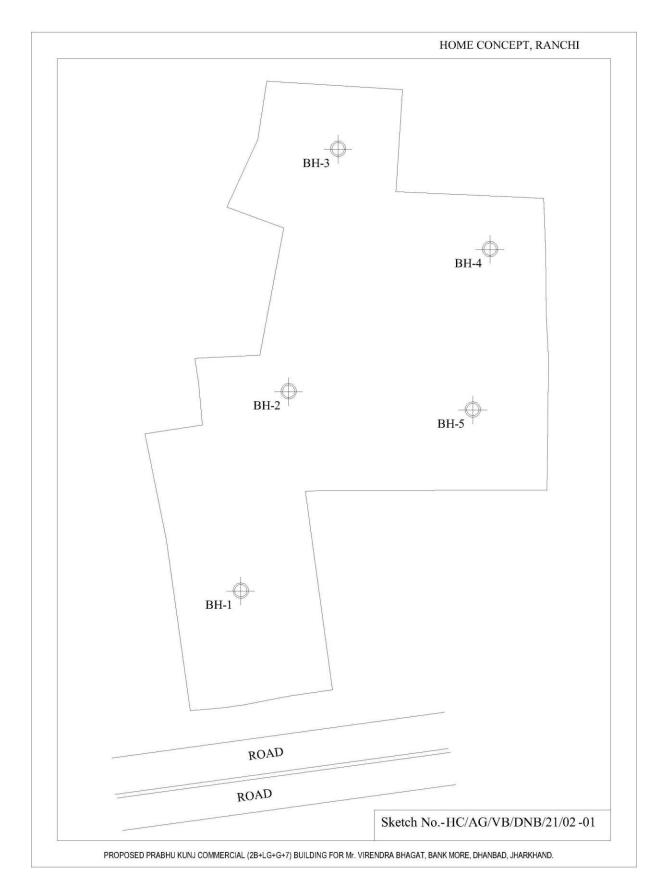
On the basis of the annexed calculations, it is being recommended to consider the following :

N	let Allowable Bearir	ng Capacity (q _{net}) in to	onne/sqm
Type of foundation	Foundation Depth from ERL in m	Permissible settlement considered (inmm)	(q _{net}) in tonne/sqm
Isolated Square	7.5	40	25
Isolated rectangular	7.5	40	25
Raft	7.5	75	25

Since the boreholes could not be taken below a depth 5.2 m and foundation of structure are proposed to rested on at 7.5 m depth, the nature of soil at the proposed founding depth could not be explored. In the present report we have considered the founding layer will be stronger than layer 3 & 4, layer 4 is a weathered rock layer is stronger than layer 3. In view uncertainty, we have conservatively considered layer 3 as foundation layer.

It is recommended that after excavation the geotechnical consultant is asked to visit the site and accordingly subsequent advice on SBC to considered for foundation design is taken.

As per Bowles, Modulus of subgrade reaction


K= 40x SBC x Factor of Safety x10 Kn/m²/m

K=40x25x2.5x10 Kn/m²/m

K=25000 Kn/m²/m

Where SBC to be considered is for 25mm settlement in Tonne/sqm. In the present case, the same is $25t/m^2$

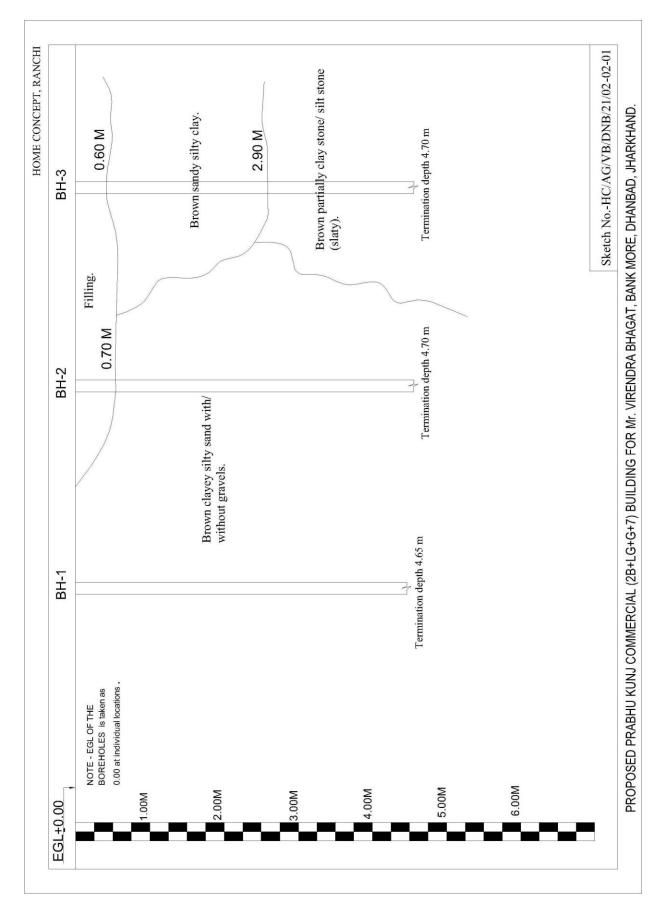
BORE HOLE LOCATION PLAN SITE: BANK MORE, DHANBAD, JHARKHAND.

HOME CONCEPT, RANCHI

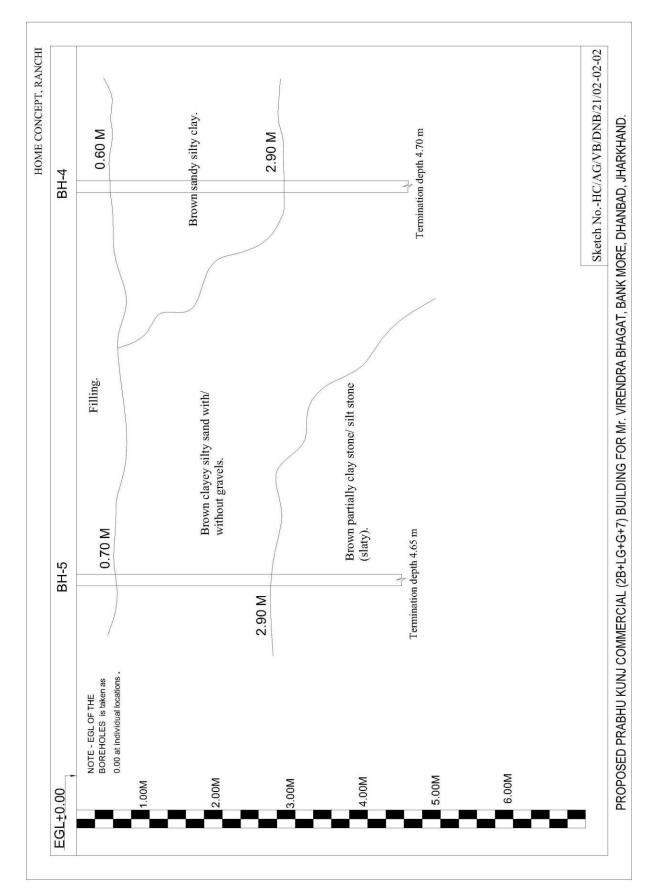
BORE LOG SITE: BANK MORE, DHANBAD, JHARKHAND.

RUDE 1	LOG SHEET	HC	OME C	CONCE	PT, R	ANCHI		Bore Hole	$N_0 \cdot 1$	(Sheet 1
	JUG SHEET JKUNJCOMMERCIAL (2B+LG+G+			A BUACAT DA		IANIBAD LUADY			HC/AG/VB/	
Co-ordinates: Sho		E.G.L.:	NUL VINENUM	Unit:	IN MORE, DE	IN IDAD, JHARKE	INTE.			
			CTNOC		NOC	CAMDURG	NOC		e Dia. :150	
Type of Boring :	Auger	SPT			-	SAMPLES WS	NUS.		ed on :05	
Depth of Boring	4.15M		3	UDS	1				d on : 05	
Type of Drilling		DCPT	_	DS	4	RCS			uck At : 2	
Depth of Drilling		VST		SCPT				Standing	Water Tabl	e : 2.50 M
DESO	CRIPTI	D N S	SYMB	DL E	EPTH	[N-'	V A	LUE	SAN NO.	M P L E DEPTH
Brown clayey s without gravels				3					DS1	0.50 M
				01-		1	1 = 05		SPT1 (DS2)	1.00 M
				a					(002)	
				02-					UDS	2.00 M
				03-		1	1 = 45		SPT2 (DS3)	3.00 M
		Л		04-				f (150 mm	SPT3	4.00 M
Termination dep	oth 4.15m	/		63		fo	or 63	blows)	(DS4)	
				05-						
				06-						
				07-						
				08-						
				09-						
				00						
				10-						
SPT - Standard DCPT - Dynamic (Test.	Penetration Test Cone Penetration	VST- V UDS -		urbed				ample Penetratic	n RCS - R	iter Sample ock Core ample

BORE LO	OG SHEET	H	OME (CON	ICEP	РТ, R.	ANC	HI		Bore Hole	e No.: 2	(Sheet 1)
Project: PROPOSED PRABHUK		7) BUILDING FO	R Mr. VIREND	RA BHA	GAT, BANK	MORE, DH	ANBAD, JH	ARKHA	ND.		HC/AG/VB/	
Co-ordinates: Show	n in drawing	E.G.L.:		Uni	it:						Dia. :150	
	Auger	FIELDT	ESTNOS	.SAN	IPLES	NOS.	SAMP	LES	NOS		ed on :06.	
	4.20M	SPT	4		DS	1	WS				d on : 06.	
Type of Drilling	1.20111	DCPT		D		5	RCS	3			uck At : 3 .	
Depth of Drilling		VST		-	PT	0		· .			Water Table	
		1		1			ī	-		ocurrang		
	RIPTI	0 N	SYMB	OL	DF	EPTH	N	I-V	A	LUE	SAN NO.	A P L E DEPTH
Filling.											DS1	0.50 M
Brown clayey sil without gravels.	ty sand with/				01-	-		Ν	= 23	5	SPT1	1.00 M
without gravels.											(DS2) UDS	1.50 M
					02			Ν	= 46	;	SPT2 (DS3)	2.00 M
					03			Ν	= 61		SPT3 (DS4)	3.00 M
		Л			04		A			f (200 mm	SPT4	4.00 M
Fermination dept	h 4.20m	V			1	/		10	101	blows)	(DS5)	
					05							
					06							
					07—							
					08							
					09—							
					10							
SPT – Standard P	Penetration Test	VST_	Vane C	heer	Teet	- 20	- Diet	urb	ed C	ample	WC _ WA	ter Sample
DCPT – Dynamic Co Test.			Undis Samp	turb				ic (Penetratic	n RCS - R	ock Core ample

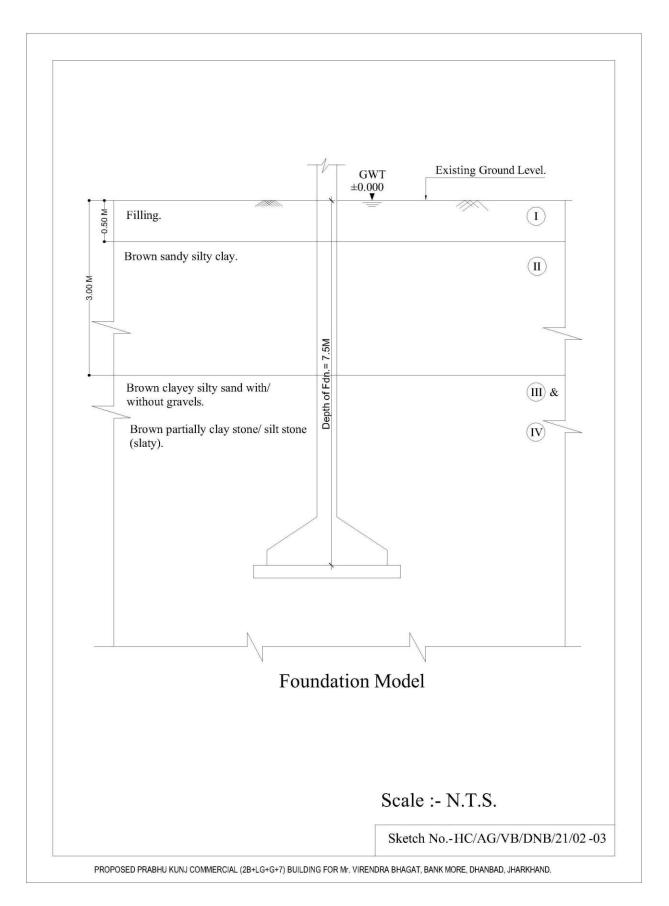

	G SHEET		OME (Bore Hole		(Sheet 1)
$\operatorname{Project}:$ proposed prabhuku		1	OR Mr. VIREND		8	MORE, DH	IANBAD, JHA	ARKHA	ND.		HC/AG/VB/	
Co-ordinates: Shown		E.G.L.:		Un						Bore Hole	Dia. :150	MM.
	Auger							LES	NOS		ed on :06	
	3.65M	SPT	3		DS	1	WS				1 on : 06	
Type of Drilling		DCPT		D		4	RCS				uck At : 2	
Depth of Drilling		VST		SC	PT					Standing	Water Tabl	e :2.00 M
DESC	RIPTIO	O N	SYMB	OL	DE	PTH	N	-V	Α	LUE -	SAN NO.	M P L E DEPTH
Filling.											DS1	0.50 M
Brown sandy silty	/ clay			2	-						031	0.50 10
biown sandy sing	ciay.				01			Ν	= 03	l	SPT1 (DS2)	1.00 M
					02						UDS	2.00 M
Brown partially c (slaty).	lay stone/ silt s	tone			03-			Ν	= 65		SPT2 (DS3)	3.00 M
(our) J.		Λ			_		X			f (150 mm blows)	SPT3	3.50 M
					05 06 07 08 09 10							
SPT - Standard P DCPT - Dynamic Co Test.			Vane S - Undis Sampl	turb				ic (ample Penetratio	n RCS – R	ter Sample ock Core ample

BORE LOG SHE	ET	IOM	E CO	NCEP	T, RA	ANCHI		Bore Hole		(Sheet 1
$\operatorname{Project}:$ proposed prabhu kunj commercia	L (2B+LG+G+7) BUILDING	FOR Mr. VI	RENDRA BHA	GAT, BANK	MORE, DHA	NBAD, JHARKHA			HC/AG/VB/	
Co-ordinates: Shown in draw	ing E.G.L.	:	Un	it:					e Dia. :150	
Type of Boring : Auger		TESTN	IOS. SA	MPLES	NOS. S	SAMPLES			ed on :07.	
Depth of Boring 5.15M	SPT			DS	1	WS			d on : 07 .	
Type of Drilling	DCPT		-)S	7	RCS			uck At : 2.	
Depth of Drilling	VST			CPT					Water Table	
and a strain g		-				1		o tantang		
DESCRIP	ΤΙΟΝ	SYN	MBOL	DF	PTH	N-V	A	LUE	NO.	A P L E DEPTH
Filling.				Ē						
D		-				_			DS1	0.50 M
Brown sandy silty clay.				01-		N	= 02		SPT1	1.00 M
				-					(DS2)	
				-		N	= 07		SPT2	1.50 M
				-					(DS3)	
				02-		N	= 18		SPT3	2.00 M
				-			10.000		(DS4)	
				_					UDS	2.50 M
Brown clayey silty sand w	vith/			03—		N	= 30		SPT4	3.00 M
without gravels.	vitil,								(DS5)	
Without Statelo.				_						
				04-		N	= 53		SPT5	4.00 M
									(DS6)	
				-						
	,			05		/ N.	- D -4	(450	ODTO	5 00 M
Termination Joseth 6 15.	/	_			-/			(150 mm blows)	SPT6 (DS7)	5.00 M
Termination depth 5.15m	V			-	Y		02	510110)	(001)	
				-						
				06—						
				-						
				_						
				-						
				07—						
				-						
				-						
				08-						
				-						
				-						
				-						
				09-						
				-						
				-						
				10-						
				-						
				-						
SPT – Standard Penetratio	n Test VST-	Vane	Shear	· Test	DS -	Disturb	ed Sa	mple	WS - Wa	ter Sample
					0000376					P10
DCPT – Dynamic Cone Penetr			disturt nple	oed	SCPT-	-Static (Penetratic		ock Core


BHLGHG¥77 BUILDING FO ng E.G.L.: FIELDT SPT DCPT VST C I O N	EST NOS.	Unit:		hanbad, jharki SAMPLE: WS	S NOS.	Bore Hole	HC/AG/VB/ Dia. :150	MM.
FIELDT SPT DCPT VST	EST NOS. 6	SAMPLE UDS DS	1		S NOS.	Bore Hole	Dia. :150	MM.
SPT DCPT VST	6	UDS DS	1			Commono	ad an .07	07 2021
DCPT VST		DS		WS				
VST	CVAD		5	11.10		Completee	1 on : 07	.07.2021
	evan	SCPT		RCS		Water Str	uck At : 2.	.50 M
ΓΙΟΝ	CIVID					Standing	Water Tabl	e : 2.50 M
	SYMB	OL I	EPTI	I N-	V A	LUE	SAN NO.	M P L E DEPTH
							Second and a second	
+h /				_			DS1	0.50 M
un/		01-			N = 11		SPT1 (DS2)	1.00 M
		02-		1	V = 36		SPT2 (DS3) UDS	2.00 M 2.50 M
silt stone		03-		1	N = 58		SPT3 (DS4)	3.00 M
		04-					SPT4 (DS5)	4.00 M
								4.50 M
		06-						
		08-						
		09-						
		10						
		10-						
	- Undist	turbed						ter Sample ock Core
		/ silt stone / silt stone // Image: Store of the stor	i 01- 02- 02- i 03- 04- 04- 05- 05- 06- 06- 07- 06- 08- 09- 10- 10- Test VST- Vane Shear Test	silt stone 03 / silt stone 03 04 04 04 05 06 07 07 06 08 09 10 10 10 10	01 01 02 1 03 1 04 1 04 1 05 1 06 0 07 0 08 0 09 10 10 10 10 10	01 N = 11 02 N = 36 03 N = 58 04 N = 63 04 N = 63 05 06 06 07 07 06 07 07 08 08 09 09 10 10 10 10	01 N = 11 02 N = 36 / silt stone 03 N = 58 04 N = 63 04 N = 63 05 for 51 blows) 06 06 07 06 08 08 09 09 09 09 10 10 10 10 10 SCPT-Static Cone Penetratio	01

HOME CONCEPT, RANCHI

SECTION SITE: BANK MORE, DHANBAD, JHARKHAND.



Page 16 of 19

HOME CONCEPT, RANCHI

FOUNDATION MODEL SITE: BANK MORE, DHANBAD, JHARKHAND.

						SUM	MARY	OF LA	BORAT	ORY TH	EST RES	SULTS								
	Description of layer	Bore Hole	Depth	Sample Type -	SPT value	Atterbu	rg Limits	Bulk Density	Water Content	Cohesion in	angle in	Co-eff.	of volume	compres	sibility in s	sqcm/kg		Gra	ding	
		No.		UD/D		LL	PL	in T/cum	in %	kg/sqcm	degree	n	n_v under	pressure	(kg/sqcm	1)	Gravel (> 4.75	Sand (0.075 -	Silt (0.002 -	Clay (< 0.002
			Meter					γ	m	с	ф	0.25 - 0.5	0.5 -1	1 - 2	2 - 4	4 - 8	mm) %	4.75 mm) %	0.075 mm) %	mm) %
Strata 1	Filling.	BH-2	0.5	DS																
		BH-3	0.5	DS																
		BH-4	0.5	DS																
		BH-5	0.5	DS																
Strata 2	Brown sandy silty clay.	BH-3	1	DN	3												0	21	32	47
		BH-3	2	UD		39	21	1.98	15.7	0.65	11	0.041	0.037	0.027	0.023	0.019	0	25	29	46
		BH-4	1	DN	2															-
		BH-4	1.5	DN	7															-
		BH-4	2	DN	18															-
		BH-4	2.5	UD		41	20	1.97	12.5	0.6	9	0.042	0.035	0.029	0.025	0.022	0	20	35	45
Strata 3	Brown clayey silty sand with/ without gravels.	BH-1	0.5	DS																
	0	BH-1	1	DN	5															-
		BH-1	2	UD		37	19	1.83	9.63	0.25	18	0.0270	0.0210	0.0170	0.0125	0.0090	0	51	26	23
		BH-1	3	DN	45												3	57	22	18
		BH-1	4	DN	REF												2	61	24	13
		BH-2	1	DN	23												0	48	29	23
		BH-2	1.5	UD		36	18	2.02	10.5	0.3	20	0.032	0.025	0.019	0.0135	0.011	0	50	22	28
		BH-2	2	DN	46															-
		BH-2	3	DN	61												0	57	25	18
		BH-2	4	DN	REF												2	59	23	16

		BH-4	3	DN	30												0	52	26	22
		BH-4	4	DN	53												1	61	20	18
		BH-4	5	DN	REF												3	63	17	17
		BH-5	1	DN	11															-
		BH-5	2	DN	36															-
		BH-5	2.5	UD		37	18	198	9.5	0.25	23	0.0290	0.0240	0.0220	0.0120	0.0098	0	58	18	24
Strata 4	Brown partially clay stone/ silt stone (slaty).	BH-3	3	DN	65															-
		BH-3	3.5	DN	REF															-
		BH-5	3	DN	58															-
		BH-5	4	DN	63															-
		BH-5	4.5	DN	REF															-

SUMMARY OF FIELD/LABORATORY DATA AND CONSIDERED DESIGN PARAMETERS

Sub-soil Statification & Properties

FIELD RESULTS

Stratum	Description of layer	Layer	Field N O	bserved	Corrected N
No.		Thickness	Depth	Value	Value
		Meter	Meter		
Strata 1	Filling.	0.8			
Strata 2	Brown sandy silty clay.	2	1	3	5
Strata 3	Brown clayey silty sand with/ without gravels.	5	1	23	31
Strata 4	Brown partially clay stone/ silt stone (slaty).	3	3	65	50

Depth of water Table from EGL = 2 Meter

NOTE 1. If Water table is not met, then the water Table data has been assumed.

2. Layer thickness assumed for the last known layer

LABORATORY RESULTS

Stratum No.	Description of layer	Cohesion in T/sqm	Friction angle in degree	Bulk Density in T/cum	Co-eff. of volume compressibility in sqm/T
		С	¢	γ	m _v
Strata 1	Filling.				
Strata 2	Brown sandy silty clay.	6.00	9.0	1.97	0.00290
Strata 3	Brown clayey silty sand with/ without gravels.	2.50	18.0	1.83	0.00170
Strata 4	Brown partially clay stone/ silt stone (slaty).				

Note - If the sample has not shown significant compressibility, a negligible m_ν has been assumed $\mbox{DESIGN PARAMETERS}$

				E	sand	
Design Stratum	Soil Type	E _{clay}	SBC 5T - 10T	SBC 10T - 20T	SBC 20T - 40T	SBC 40T - 80T
Strata 3	SAND	1500	2222	3318	5511	9898
С	¢	Depth of Water Table from EGL*	γ	m _v	Е	μ
C T/sqm	¢ Degrees	Depth of Water Table from EGL* meter	γ T/Cum	m_v Sqm/T	E T/sqm	μ

* For design purpose, Ground Water Table has been considered as at EGL due to seasonal variation in GWT

CHECK FOR TYPE OF SHEAR FAILURE

 $\label{eq:constraint} \begin{array}{l} \text{Design value of } \varphi, \text{in degrees} = 18 \\ \textbf{Friction Angle}{<} = 28 \\ \textbf{degrees, Local Shear Failure} \end{array}$

As per IS 6403-1981, cl. No. 5.1.2, the Ultimate Net Safe Bearing Capacity (Net q(ult)) 1 For General Shear Failure, q(ult) = cNcscdcic + q(Nq-1)sqdqiq+0.5γBNγsγdγiγW'

2 For Local Shear Failure, $q(ult) = c'N'cscdcic + q(N'q-1)sqdqiq+0.5\gamma BN'\gamma s\gamma d\gamma i\gamma W'$

3 For Intermediate Shear Failure, q(ult) = Value in between the General & Local Shear Failure

RECOMMENDATION FOR NET SAFE BEARING CAPACITY

A. As per IS- 12070-1987 Table-2,

Net Safe Bearing Pressure (q_{ns}) based on classification

For Soft or broken bed rock	=	100 T/sqm
Correction factor for submergence	=	0.5 (a)
Correction factor for cavities	=	0.5(b)
Applying correction factors (a) & (b),		
$q_{ns} = 100 \text{ x } 0.5 \text{ x } 0.5$	=	25 T/sqm (1)

B. As per IS- 12070-1987 Table-3,

Net Safe Bearing Pressure (q_{ns}) based on RMR

The present deposit may be CONSERVATIVELY considered under Classification No. V and having Description of Rock as "Very poor" with RMR value Range 20–0.

Therefore, as per the table, q_{ns}	=	40 T/sqm (2)
C. Based on SPT value		
Refer annexed calculation, q_{ns}	>	50 T/sqm (3)
From (1), (2) & (3) above,		

The recommended net safe bearing capacity = 25 T/sqm at a depth of 7.5metre from EGL.